Introduction

For my project, I’m looking at ecological data, specifically about a variety of different tree species. The data is collected from an undergraduate ecology course about a variety of tree species around campus. This data contributes to an overarching phenological problem regarding carbon emissions and the rate at which leaves fall off the tree. I’m building some graphs that show some interesting aspects of trees and their leaves. Since the National Phenology Network uses data provided from Citizen Scientists, I’m going to look at the implications of using their data for analysis while also doing some analysis regarding the different species of trees around campus.

Materials and methods

Collecting the data:

  • Students are enrolled in undergrad Environmental Science class.
  • Students were assigned up to four trees around campus.
  • Each tree was identified and assigned a tag by the professor.
  • Students had to be make 4 observations a week (one for each tree).
  • Students then input data into an app which is then recorded in the database.

Running the analysis:

  • Install/Download the appropriate libraries
  • Retrieve the data that is stored online using UB’s network ID.
  • Pull the two data sources together (student’s data and tree’s data) and perform some exploratory analysis.
  • Create some exploratory tables that can be used for analysis.
  • Generate some graphs that show some interesting finds about the data.

Load all packages (you may need to install some packages):

library(tidyverse)
library(devtools)
#devtools::install_github("usa-npn/rnpn")
library(rnpn)
library(dplyr)
library(lubridate)
library(leaflet)
library(readxl)
library(sf)
library(spData)
library(ggmap)
library(kableExtra)
library(knitr)
library(data.table)
library(broom)
library(widgetframe)
library(DT)
knitr::opts_chunk$set(cache=TRUE)  ##cache the results for quick compiling
When you run the code to install the libraries, make sure to uncomment the install the ‘rnpn’ library from github so in the next chunk, you will be able to retrieve the data.

Download and clean all required data

#npn_groups() %>% filter(grepl("Buffalo",network_name)) <- Identifies network ID

d=npn_download_status_data("Testing",
                           years=c('2019'),
                           additional_fields=list("Plant_Nickname",
                                                  "ObservedBy_Person_ID"),
                           network_ids=c(891))

d_filtered <- d %>%
  rename("a"="intensity_value") %>% 
  mutate(
    date = as.Date(observation_date),
    month = month(date),
    tag = as.numeric(substr(plant_nickname,1,3)),
    intensity=case_when(
      a == "Less than 5%" ~ 2.5,
      a == "Less than 25%" ~ 20,
      a == "5-24%" ~ 14.5,
      a == "25-49%" ~ 37,
      a == "50-74%" ~ 62,
      a == "75-94%" ~ 84.5,
      a == "95% or more"  ~ 97.5,
      a == "Less than 3"  ~ 2,  
      a == "3 to 10" ~ 6.5,
      a == "11 to 100" ~ 50,
      a == "101 to 1,000" ~ 500,
      a == "1,001 to 10,000" ~ 5000,
      a == "Little" ~ 5,
      a == "Some" ~ 3,  
      TRUE ~ as.numeric(NA)
    ))%>%
  filter(phenophase_description%in%c("Leaves","Colored leaves"))

d_filtered <- d_filtered %>%
  mutate(leaf_drop = case_when(
    intensity < 50 ~ "Dropped",
    intensity >= 50 ~ "Not Dropped"
  ))

trees <- read_csv("trees.csv")

trees <- trees %>% 
  mutate(color = case_when (
    common_name == "Red Oak" ~ "red",
    common_name == "Black Oak" ~ "black",
    common_name == "Silver Maple" ~ "darkblue",
    common_name == "Red Maple" ~ "orange",
    common_name == "Black Locust" ~ "purple",
    common_name == "Sugar Maple" ~ "darkpurple",
    common_name == "Staghorn Sumac" ~ "blue",
    common_name == "Eastern Cottonwood" ~ "beige",
    common_name == "Apple" ~ "yellow",
    common_name == "American Basswood" ~ "pink",
    common_name == "River Birch" ~ "lightred",
    common_name == "White Birch" ~ "cadetblue",
    common_name == "Ginkgo" ~ "lightgray"
  ))
To download the data that is being stored on another server, we must remember to install the ‘rnpn’ package from github listed above and put in the correct ‘network id’

Exploratory Data Analysis

table <- prop.table(table(d$common_name)) * 100
table %>%
  kable(col.names = c("Common Name","Percentage of Observations"), digits = 2) %>% kable_styling(full_width = FALSE, fixed_thead = TRUE) %>%
  scroll_box(width = "500px", height = "200px", fixed_thead = TRUE)
Common Name Percentage of Observations
American basswood 8.54
apple 7.44
black locust 8.90
black oak 5.21
Canada goose 0.57
eastern cottonwood 3.07
maidenhair tree 10.91
northern red oak 8.27
paper birch 6.52
red maple 8.28
river birch 9.66
silver maple 3.57
staghorn sumac 7.55
sugar maple 11.50
The table above shows the proportion of observations for each tree. This helps show what trees contributed to most of the observations. We can easily see that the tree with the most observations is the ‘Sugar Maple’ while the tree that was the least common was the ‘Canada Goose’.
d_filtered %>%
  group_by(common_name, month) %>%
  summarize(var_intensity = var(intensity,na.rm = TRUE),
            mean_intensity = mean(intensity, na.rm = TRUE)) %>%
  filter(var_intensity != 0) %>%
  kable(digits = 2, col.names = c("Name","Month","Intensity Variance","Intensity Average")) %>% kable_styling() %>% scroll_box(width = "500px", height = "200px")
Name Month Intensity Variance Intensity Average
American basswood 9 1354.79 51.69
American basswood 10 959.07 53.56
American basswood 11 1574.28 46.22
apple 9 1153.33 53.44
apple 10 891.99 42.52
apple 11 1189.74 39.28
black locust 9 1110.18 62.58
black locust 10 1051.78 50.94
black locust 11 1273.13 30.57
black oak 9 1698.06 51.66
black oak 10 1117.18 48.63
black oak 11 1014.96 63.86
eastern cottonwood 9 1192.67 48.09
eastern cottonwood 10 603.41 40.77
eastern cottonwood 11 1633.33 49.50
maidenhair tree 9 1483.71 64.64
maidenhair tree 10 1041.16 56.22
maidenhair tree 11 1426.18 49.42
northern red oak 9 1725.51 55.33
northern red oak 10 1043.45 52.81
northern red oak 11 1100.92 59.44
paper birch 9 1382.37 56.55
paper birch 10 862.80 51.46
paper birch 11 1453.00 51.68
red maple 9 1223.27 54.82
red maple 10 834.25 60.34
red maple 11 1310.82 38.51
river birch 1 126.56 31.38
river birch 9 1240.32 63.19
river birch 10 1007.42 54.76
river birch 11 1156.11 52.14
silver maple 9 1222.62 52.24
silver maple 10 849.96 50.42
silver maple 11 1209.10 38.83
staghorn sumac 9 1047.50 45.44
staghorn sumac 10 767.07 51.07
staghorn sumac 11 1545.31 48.01
sugar maple 9 1562.26 56.89
sugar maple 10 997.16 56.74
sugar maple 11 1272.38 52.50
The table above shows the variance in observations for the same species of trees and how they differ from month to month. This shows that even though students are looking at the same tree, the observer may see the tree differently.
d_filtered %>%
  group_by(tag,observedby_person_id, month) %>%
  summarize(var_intensity = var(intensity,na.rm = TRUE)) %>%
  filter(var_intensity != 0) %>%
  kable(digits = 2,
        col.names = c("Tag ID","Person ID","Month","Intensity Variance")) %>%
  kable_styling() %>%
  scroll_box(width = "500px", height = "200px")
Tag ID Person ID Month Intensity Variance
101 49450 9 4512.50
101 49464 11 4512.50
101 49468 9 2578.57
101 49468 10 1542.14
101 49468 11 302.70
101 49545 9 1941.07
101 49545 10 874.03
101 49545 11 2503.50
101 49549 9 2707.50
101 49549 10 1649.69
101 49549 11 308.50
101 49606 9 1949.33
101 49606 10 505.83
101 49608 9 1594.40
101 49613 11 4512.50
101 49616 9 1128.12
101 49627 10 3362.00
101 49657 9 1749.45
101 49657 10 606.19
101 49657 11 1800.40
101 49661 10 1830.12
101 49688 10 1798.57
101 49688 11 238.54
101 49689 9 4512.50
101 49703 9 84.50
101 49971 11 4512.50
101 50044 10 3008.33
102 49450 9 4512.50
102 49468 9 2578.57
102 49468 10 1601.58
102 49468 11 302.70
102 49545 9 1727.99
102 49545 10 1115.32
102 49545 11 2503.50
102 49549 9 676.88
102 49549 10 873.25
102 49549 11 1800.40
102 49606 9 1180.08
102 49606 10 869.29
102 49657 9 1749.45
102 49657 10 746.57
102 49657 11 2213.40
102 49683 9 2450.00
102 49688 10 1502.48
102 49688 11 792.27
102 50044 9 2653.00
102 50044 10 1949.33
103 49450 9 4512.50
103 49468 9 2578.57
103 49468 10 1625.62
103 49468 11 302.70
103 49545 9 2494.30
103 49545 10 989.96
103 49545 11 2503.50
103 49549 9 1470.00
103 49549 10 1172.39
103 49606 9 208.33
103 49606 10 460.52
103 49657 9 2264.20
103 49657 10 979.40
103 49657 11 1546.23
103 49688 9 2017.20
103 49688 10 1215.77
103 49688 11 555.57
103 50044 9 2638.92
103 50044 10 1949.33
104 49549 11 630.12
104 49579 10 1584.67
104 49579 11 1232.20
104 49601 10 389.38
104 49619 9 1662.00
104 49619 10 1400.00
104 49652 9 2296.33
104 49683 9 2450.00
104 49683 10 641.67
104 49683 11 126.56
105 49450 9 4512.50
105 49468 9 1968.29
105 49468 10 1625.62
105 49468 11 302.70
105 49545 9 2494.30
105 49545 10 1004.40
105 49545 11 2433.71
105 49549 9 1470.00
105 49549 10 1306.67
105 49549 11 706.42
105 49606 9 2241.33
105 49606 10 1160.03
105 49657 9 1749.45
105 49657 10 875.69
105 49657 11 2213.40
105 49688 9 1844.40
105 49688 10 1514.54
105 49688 11 558.57
105 50044 9 2653.00
105 50044 10 2241.33
106 49579 10 280.40
106 49579 11 1060.03
106 49601 9 48.00
106 49601 10 564.38
106 49619 9 2264.20
106 49619 10 1670.86
106 49652 9 3008.33
106 49683 9 3444.50
106 49683 10 648.61
106 49683 11 376.56
107 49546 9 1722.25
107 49546 10 961.90
107 49546 11 1642.21
107 49614 9 1681.00
107 49614 10 932.92
107 49614 11 108.48
107 49679 9 2494.30
107 49679 10 1232.64
107 49692 9 2638.92
107 49692 10 1500.06
107 49710 9 1770.12
107 49710 10 1470.00
107 49710 11 752.08
107 49873 9 168.75
108 49579 10 1331.73
108 49579 11 1182.06
108 49601 9 48.00
108 49601 10 445.62
108 49619 9 2092.67
108 49619 10 1400.00
108 49652 9 2296.33
108 49683 9 2450.00
108 49683 10 1101.11
108 49683 11 512.50
109 49546 9 1722.25
109 49546 10 961.90
109 49546 11 1642.21
109 49614 9 2017.20
109 49614 10 932.92
109 49614 11 204.91
109 49679 9 2707.50
109 49679 10 1007.14
109 49692 9 1633.33
109 49692 10 3362.00
109 49710 9 3362.00
109 49710 10 376.56
109 49710 11 302.70
109 49873 9 168.75
110 49024 9 3362.00
110 49579 11 1232.20
110 49601 9 48.00
110 49601 10 389.38
110 49619 9 2092.67
110 49619 10 1670.86
110 49652 9 3008.33
110 49683 9 4512.50
110 49683 10 999.24
110 49683 11 156.25
110 49692 10 1128.12
111 49546 9 1722.25
111 49546 10 961.90
111 49546 11 856.32
111 49614 9 2017.20
111 49614 10 1080.57
111 49614 11 204.91
111 49653 9 439.29
111 49679 9 2196.70
111 49679 10 933.48
111 49692 9 1089.06
111 49692 10 1128.12
111 49710 9 2450.00
111 49710 11 313.94
112 49483 9 3362.00
112 49546 9 1722.25
112 49546 10 961.90
112 49546 11 856.32
112 49614 9 1062.07
112 49614 10 555.25
112 49614 11 108.48
112 49629 10 630.12
112 49679 9 2196.70
112 49679 10 695.42
112 49692 9 2653.00
112 49692 10 2450.00
112 49710 9 3362.00
112 49710 10 376.56
112 49710 11 1166.90
112 49873 9 208.33
113 49452 9 168.75
113 49452 10 541.71
113 49491 9 2450.00
113 49558 9 1224.32
113 49558 10 303.12
113 49558 11 1335.04
113 49629 9 1884.70
113 49629 10 1083.48
113 49629 11 2664.33
113 49653 9 439.29
113 49653 10 894.57
113 49653 11 2503.50
113 49695 10 894.75
113 49695 11 72.00
114 49452 9 1662.00
114 49452 10 999.24
114 49452 11 72.00
114 49491 9 3444.50
114 49558 9 1513.39
114 49558 10 303.12
114 49558 11 1015.17
114 49604 9 168.75
114 49629 9 2707.50
114 49629 10 486.64
114 49629 11 2664.33
114 49653 9 470.42
114 49653 10 1037.86
114 49653 11 2664.33
114 49695 9 1633.33
114 49695 10 851.46
114 49695 11 48.00
115 49452 9 384.38
115 49452 10 1244.50
115 49491 9 2450.00
115 49558 9 1385.92
115 49558 10 274.00
115 49558 11 907.54
115 49604 9 253.12
115 49629 9 2494.30
115 49629 10 1030.75
115 49653 9 517.29
115 49653 10 841.13
115 49653 11 3008.33
115 49695 9 920.83
115 49695 10 907.97
116 49438 9 1696.21
116 49438 10 613.96
116 49470 9 1882.57
116 49566 9 975.00
116 49566 10 348.61
116 49566 11 3008.33
116 49577 9 4512.50
116 49609 9 253.12
116 49609 11 312.50
116 49627 9 935.62
116 49627 10 478.00
116 49699 9 1331.73
116 49699 10 389.17
116 49835 9 1662.00
116 49835 10 901.67
116 49835 11 1633.33
117 49438 10 816.88
117 49470 9 1662.00
117 49566 9 1662.00
117 49566 10 626.74
117 49566 11 752.08
117 49577 9 595.12
117 49609 11 253.12
117 49627 9 885.06
117 49627 10 1206.94
117 49627 11 312.50
117 49699 9 892.58
117 49699 10 944.07
117 49835 9 1413.38
117 49835 10 476.79
117 49835 11 1234.90
118 49555 9 2017.20
118 49555 10 909.79
118 49555 11 4512.50
118 49632 9 3008.33
118 49632 10 742.55
118 49632 11 2320.92
118 49966 10 672.29
119 49555 9 2256.25
119 49555 10 1304.64
119 49555 11 4512.50
119 49632 9 3008.33
119 49632 10 1238.36
119 49632 11 2320.92
119 49966 10 672.29
119 49966 11 24.00
120 49024 9 4512.50
120 49446 9 1989.98
120 49446 10 1690.96
120 49446 11 3444.50
120 49539 9 714.29
120 49539 10 935.53
120 49560 9 1504.17
120 49560 10 1399.20
120 49560 11 38.40
120 49611 9 985.88
120 49611 10 312.50
120 49611 11 978.08
120 49620 9 476.88
120 49620 10 120.39
120 49620 11 1800.40
120 49995 9 2450.00
121 49446 9 422.48
121 49446 10 839.60
121 49446 11 4512.50
121 49539 9 630.95
121 49539 10 783.95
121 49560 9 2066.70
121 49560 10 546.10
121 49566 9 3444.50
121 49611 9 769.94
121 49611 10 312.50
121 49611 11 978.08
121 49620 9 476.88
121 49620 10 120.39
121 49620 11 1800.40
121 49995 9 253.12
122 49438 9 126.56
122 49438 10 156.25
122 49566 9 2295.07
122 49566 10 1069.17
122 49566 11 36.00
122 49627 9 1089.06
122 49627 10 2320.92
122 49699 9 1633.33
122 49699 10 1225.00
122 49835 9 1982.20
122 49835 10 901.67
122 49835 11 1234.90
123 49438 9 126.56
123 49438 10 522.40
123 49566 9 56.33
123 49566 10 1069.17
123 49566 11 36.00
123 49609 10 312.50
123 49627 9 1225.00
123 49627 10 2241.33
123 49699 9 752.08
123 49699 10 1225.00
123 49835 9 1470.00
123 49835 10 778.12
123 49835 11 1949.33
124 49555 9 1681.00
124 49555 10 1223.00
124 49632 10 168.75
124 49693 9 4512.50
124 49966 10 614.24
125 49555 9 1225.00
125 49555 10 1336.10
125 49632 10 168.75
125 49693 9 4512.50
125 49966 9 42.25
125 49966 10 614.24
126 49446 9 126.56
126 49446 10 1400.75
126 49539 10 1665.78
126 49560 9 56.33
126 49560 10 1774.44
126 49560 11 253.12
126 49611 9 168.75
126 49611 11 802.06
126 49620 9 2394.30
126 49620 10 860.60
126 49620 11 376.56
126 49995 9 2450.00
127 49446 9 1127.67
127 49446 10 1812.46
127 49446 11 4512.50
127 49539 9 1485.20
127 49539 10 1683.58
127 49560 10 1365.50
127 49611 9 168.75
127 49611 11 72.00
127 49620 9 2394.30
127 49620 10 701.79
127 49620 11 1800.40
127 49995 9 3362.00
128 49447 9 445.62
128 49447 10 1194.67
128 49554 9 826.23
128 49554 10 816.07
128 49840 10 2304.25
128 50194 9 512.50
128 50194 10 860.60
128 50194 11 2450.00
128 50686 10 1504.98
128 50686 11 2664.33
129 49447 9 1233.67
129 49447 10 861.31
129 49554 9 826.23
129 49554 10 857.48
129 49840 10 1277.08
129 50194 9 688.50
129 50194 10 942.55
129 50686 10 1941.07
129 50686 11 2664.33
130 49447 9 1770.12
130 49452 9 1131.00
130 49452 10 434.79
130 49452 11 72.00
130 49491 9 3444.50
130 49558 9 1312.54
130 49558 10 303.12
130 49558 11 661.54
130 49604 9 253.12
130 49629 9 1884.70
130 49629 10 789.17
130 49629 11 1978.92
130 49653 9 814.88
130 49653 10 833.48
130 49653 11 4512.50
130 49695 9 1633.33
130 49695 10 541.74
130 49695 11 104.17
131 49447 9 655.39
131 49447 10 396.43
131 49447 11 1277.08
131 49554 9 2289.90
131 49554 10 1087.24
131 49840 9 1633.33
131 49840 10 2450.00
131 49840 11 1546.23
131 50194 9 752.08
131 50194 10 472.77
131 50194 11 1553.00
131 50686 10 1777.29
131 50686 11 2320.92
132 49447 9 1844.40
132 49447 10 314.17
132 49447 11 1128.12
132 49471 9 1844.40
132 49471 10 226.04
132 49471 11 1800.40
132 49554 9 2018.78
132 49554 10 813.93
132 49557 9 2394.30
132 49574 9 2258.57
132 49597 9 1513.39
132 49597 10 369.11
132 49628 9 1900.92
132 49628 10 1411.04
132 49628 11 3444.50
132 49840 9 1978.92
132 49840 10 1128.12
132 49840 11 2664.33
132 50194 9 1234.90
132 50194 10 390.07
132 50194 11 1553.00
132 50686 10 1834.98
132 50686 11 2664.33
133 49476 9 899.74
133 49554 10 253.12
133 49559 9 1770.12
133 49583 9 2494.30
133 49583 10 1112.20
133 49621 9 2707.50
133 49621 10 761.00
133 49621 11 2707.50
133 49714 9 1234.75
133 49714 10 725.39
133 49714 11 2664.33
134 49476 9 1722.25
134 49484 9 4512.50
134 49621 9 2707.50
134 49621 10 1922.80
134 49621 11 258.07
134 49714 9 1414.20
134 49714 10 1399.20
134 49714 11 1059.32
134 50218 10 1633.33
135 49444 10 1803.12
135 49444 11 872.17
135 49484 9 2461.36
135 49484 10 1609.44
135 49484 11 1378.64
135 49564 10 3362.00
135 49626 9 2256.25
135 49626 10 2099.50
135 49626 11 208.33
135 49770 9 2017.20
135 49770 10 1231.34
135 49770 11 156.25
135 50218 10 72.00
136 49444 9 2256.25
136 49444 10 1690.25
136 49444 11 1546.23
136 49484 9 2394.68
136 49484 10 1609.44
136 49484 11 1666.87
136 49564 10 4512.50
136 49626 9 2256.25
136 49626 10 1934.71
136 49626 11 208.33
136 49684 9 3362.00
136 49770 9 2017.20
136 49770 10 1335.88
136 49770 11 208.33
137 49451 9 3362.00
137 49463 9 587.67
137 49463 10 388.61
137 49463 11 1560.50
137 49563 9 2295.07
137 49563 10 564.06
137 49563 11 1664.37
137 49594 9 676.88
137 49594 10 304.24
137 49594 11 1800.40
137 49617 9 2091.87
137 49617 10 1467.77
137 49617 11 3444.50
137 49702 9 1650.44
137 49702 10 381.08
137 49702 11 2066.70
137 49971 10 1304.64
137 49971 11 3008.33
138 49451 9 3362.00
138 49463 9 769.94
138 49463 10 358.43
138 49463 11 2102.25
138 49563 9 1662.00
138 49563 10 1266.42
138 49563 11 2061.44
138 49583 9 2488.67
138 49583 10 1112.20
138 49594 9 451.67
138 49594 10 381.08
138 49594 11 2664.33
138 49617 9 2075.37
138 49617 10 1387.39
138 49617 11 4512.50
138 49702 9 1965.78
138 49702 10 971.71
138 49702 11 2707.50
138 49971 10 1320.18
138 49971 11 2213.40
139 49444 9 2075.37
139 49444 10 612.61
139 49444 11 1800.40
139 49484 9 1007.14
139 49484 10 314.17
139 49484 11 2099.50
139 49564 9 1400.75
139 49564 10 1128.12
139 49626 9 298.27
139 49626 10 1073.71
139 49770 9 451.67
139 49770 10 404.17
139 50218 10 253.12
140 49442 9 1128.12
140 49444 9 1882.57
140 49444 10 649.10
140 49444 11 1830.12
140 49484 9 1551.12
140 49484 10 741.67
140 49484 11 2018.78
140 49564 9 1400.75
140 49564 10 1128.12
140 49626 9 298.27
140 49626 10 1145.39
140 49770 9 314.17
140 49770 10 348.61
141 49442 9 1128.12
141 49472 9 1793.07
141 49472 10 889.04
141 49472 11 1800.40
141 49658 9 2450.00
141 49684 9 3362.00
142 49472 9 1643.36
142 49472 10 889.04
142 49472 11 1220.08
142 49628 11 48.00
142 49658 9 2450.00
143 49455 9 2450.00
143 49471 10 547.50
143 49471 11 1840.24
143 49557 9 1982.20
143 49574 9 1749.45
143 49597 9 314.17
143 49597 10 1349.03
143 49628 9 56.33
143 49628 10 1436.07
143 49628 11 1681.00
143 49701 9 253.12
143 50009 9 2450.00
144 49455 9 2450.00
144 49471 10 547.50
144 49471 11 1531.73
144 49557 9 1982.20
144 49574 9 2017.20
144 49597 10 1007.14
144 49628 9 2264.20
144 49628 10 1436.07
144 49628 11 3362.00
144 50009 9 1128.12
145 49454 9 3444.50
145 49454 10 1128.12
145 49479 9 2241.33
145 49479 10 48.00
145 49556 9 676.88
145 49556 10 276.58
145 49556 11 3444.50
145 49612 9 376.56
145 49612 10 226.04
145 49612 11 1128.12
145 49623 9 368.54
145 49659 9 676.88
145 49659 10 178.57
145 49659 11 38.40
145 49661 9 314.17
145 49661 10 789.14
145 49997 9 56.33
145 49997 10 401.04
146 49454 9 3444.50
146 49454 10 1128.12
146 49479 9 2241.33
146 49479 10 1553.00
146 49556 9 1062.08
146 49556 10 411.02
146 49556 11 3444.50
146 49612 9 522.40
146 49612 10 104.17
146 49612 11 2450.00
146 49623 9 135.00
146 49623 10 253.12
146 49659 9 676.88
146 49659 10 178.57
146 49659 11 38.40
146 49661 9 151.88
146 49661 10 788.78
147 49454 9 595.12
147 49479 10 990.08
147 49556 9 2707.50
147 49556 10 1524.46
147 49556 11 1830.12
147 49612 9 1277.08
147 49612 10 84.38
147 49612 11 2450.00
147 49623 9 1234.75
147 49659 9 1239.38
147 49659 10 322.77
147 49659 11 38.40
147 49661 9 1653.44
147 49661 10 936.89
147 49997 10 187.50
148 49454 9 1770.12
148 49479 10 1275.20
148 49556 9 2707.50
148 49556 10 1524.46
148 49556 11 1830.12
148 49612 9 1842.58
148 49612 10 226.04
148 49612 11 2450.00
148 49623 9 1234.75
148 49659 9 1306.67
148 49659 10 396.43
148 49659 11 38.40
148 49661 9 1266.18
148 49661 10 1113.69
148 49997 10 187.50
149 49471 9 261.68
149 49471 10 151.88
149 49471 11 1666.87
149 49574 9 2258.57
149 49597 9 920.83
149 49597 10 420.90
149 49628 9 2017.20
149 49628 10 1306.67
149 49628 11 36.00
150 49476 9 1239.38
150 49559 9 1770.12
150 49583 9 654.58
150 49583 10 680.05
150 49621 9 1234.75
150 49621 10 1179.27
150 49621 11 1430.04
150 49714 10 229.88
150 49714 11 158.78
151 49476 9 879.17
151 49559 9 1770.12
151 49583 9 1062.07
151 49583 10 680.05
151 49621 9 885.06
151 49621 10 1026.89
151 49621 11 1650.44
151 49714 9 168.75
151 49714 10 229.88
151 49714 11 1200.86
152 49451 9 1770.12
152 49463 9 684.30
152 49463 10 396.43
152 49463 11 4512.50
152 49563 9 1234.75
152 49563 10 564.58
152 49563 11 1666.87
152 49594 9 43.20
152 49594 10 343.06
152 49594 11 2320.92
152 49617 9 1234.75
152 49617 10 1141.57
152 49624 9 3362.00
152 49702 9 1882.57
152 49702 10 504.79
152 49702 11 2707.50
152 49971 10 948.28
152 49971 11 4512.50
153 49451 9 3362.00
153 49463 9 564.06
153 49463 10 226.04
153 49563 9 1681.00
153 49563 10 752.08
153 49563 11 1850.07
153 49594 9 43.20
153 49594 10 343.06
153 49594 11 2638.92
153 49617 9 885.06
153 49617 10 1577.78
153 49702 9 1455.07
153 49702 10 1023.49
153 49702 11 2707.50
153 49971 10 948.28
153 49971 11 4512.50
154 49442 9 2450.00
154 49472 9 56.33
154 49472 10 1218.45
154 49472 11 168.75
154 49701 11 28.80
154 50025 9 84.50
155 49442 9 3362.00
155 49472 9 1504.17
155 49472 10 1272.17
155 49472 11 156.25
155 49701 11 36.00
156 49474 9 654.58
156 49542 9 1331.73
156 49542 10 601.67
156 49542 11 752.08
156 49553 10 945.04
156 49553 11 1505.90
156 49618 9 280.40
156 49618 10 140.62
156 49618 11 208.33
157 49443 9 151.88
157 49474 9 43.20
157 49542 9 1258.37
157 49542 10 102.23
157 49542 11 1234.90
157 49618 9 42.25
157 49618 11 512.50
158 49610 10 1180.08
158 49615 9 168.75
158 49615 10 493.17
158 49615 11 1234.90
158 49703 9 42.25
158 49863 10 2450.00
158 49863 11 1835.27
159 49610 10 1180.08
159 49615 9 168.75
159 49615 10 493.17
159 49615 11 1234.90
159 49703 9 42.25
159 49863 10 2450.00
159 49863 11 1835.27
160 49573 9 1830.12
160 49622 9 1470.00
160 49622 10 1250.43
160 49622 11 3008.33
160 49681 9 3362.00
160 49700 10 208.33
160 49700 11 2450.00
160 50027 9 1633.33
160 50027 10 543.54
161 49477 9 72.00
161 49573 9 312.50
161 49622 9 1729.45
161 49622 10 1212.76
161 49622 11 4512.50
161 49681 9 595.12
161 49700 10 208.33
161 49700 11 3444.50
161 50027 9 1633.33
161 50027 10 451.67
162 49441 9 48.00
162 49477 9 396.75
162 49477 10 203.79
162 49477 11 253.12
162 49603 9 655.39
162 49603 10 451.67
162 49631 9 483.82
162 49631 10 226.04
162 49631 11 1867.57
162 49651 9 3362.00
162 49691 9 1252.67
162 49967 9 1949.33
163 49477 9 1180.08
163 49477 10 471.67
163 49477 11 253.12
163 49603 9 724.14
163 49603 10 543.54
163 49631 9 303.12
163 49631 10 373.38
163 49631 11 1867.57
163 49651 9 3362.00
163 49691 9 1239.38
163 49967 9 1949.33
164 49572 9 1750.80
164 49572 10 1607.92
164 49572 11 3444.50
164 49608 9 2241.33
164 49624 9 1510.05
164 49624 10 2450.00
164 49689 9 3008.33
164 49689 10 1633.33
164 49983 9 3444.50
165 49572 9 1662.00
165 49572 10 1921.14
165 49608 9 2241.33
165 49624 9 1451.57
165 49624 10 2450.00
165 49689 9 3008.33
165 49689 10 1633.33
165 49983 9 2450.00
166 49482 9 42.25
166 49482 10 923.75
166 49482 11 401.04
166 49523 9 2707.50
166 49523 10 775.57
166 49523 11 396.75
166 49607 9 1844.40
166 49607 10 1306.67
166 49607 11 2503.50
166 49694 9 1470.00
166 49694 10 1073.67
166 49694 11 1500.06
166 49700 9 688.50
166 49700 10 451.67
167 49482 9 42.25
167 49482 10 923.75
167 49482 11 594.17
167 49523 9 2494.30
167 49523 10 775.57
167 49523 11 396.75
167 49607 9 1844.40
167 49607 10 1306.67
167 49607 11 2503.50
167 49694 9 1470.00
167 49694 10 1073.67
167 49694 11 1681.00
167 49700 9 688.50
167 49700 10 451.67
168 49435 9 1722.25
168 49435 10 1059.14
168 49435 11 1577.78
168 49465 9 2241.33
168 49593 9 868.75
168 49593 10 800.88
168 49593 11 2250.38
168 49654 9 2017.20
168 49654 10 2241.33
168 49685 9 1470.00
168 49973 9 4512.50
169 49435 9 3008.33
169 49435 10 932.92
169 49435 11 1770.70
169 49465 9 2241.33
169 49578 9 1633.33
169 49593 9 376.56
169 49593 10 869.50
169 49593 11 2167.04
169 49654 9 2017.20
169 49654 10 2241.33
169 49685 9 1633.33
169 49973 9 2450.00
170 49542 9 56.33
170 49542 10 144.64
170 49542 11 564.06
170 49553 9 56.33
170 49553 10 1538.49
170 49599 9 253.12
170 49618 9 168.75
170 49618 10 501.67
170 49618 11 1234.90
171 49542 9 56.33
171 49542 10 120.54
171 49542 11 126.56
171 49553 10 1308.73
171 49618 11 42.25
172 49610 10 312.50
172 49615 9 1500.06
172 49615 10 400.99
172 49615 11 1234.90
172 49703 9 280.40
172 49863 10 2450.00
172 49863 11 1835.27
173 49602 10 3362.00
173 49615 9 1500.06
173 49615 10 408.60
173 49615 11 1197.44
173 49703 9 217.56
173 49863 10 2450.00
173 49863 11 1835.27
174 49437 9 3008.33
174 49464 9 1416.90
174 49464 10 133.93
174 49464 11 1798.40
174 49550 10 188.39
174 49550 11 522.40
174 49565 9 1805.00
174 49565 10 901.67
174 49565 11 168.75
174 49602 9 1510.05
174 49602 10 1514.20
174 49602 11 1777.58
174 49616 9 892.58
174 49616 10 941.85
174 49616 11 3444.50
174 49690 10 1584.67
175 49437 9 3008.33
175 49464 9 1022.54
175 49464 10 237.39
175 49464 11 1922.80
175 49550 9 168.75
175 49550 10 104.17
175 49550 11 564.06
175 49565 9 1805.00
175 49565 10 901.67
175 49565 11 168.75
175 49602 9 1510.05
175 49602 10 1375.77
175 49602 11 1800.40
175 49616 9 564.58
175 49616 10 476.79
175 49616 11 3444.50
175 49690 10 1584.67
176 49550 1 253.12
176 49552 10 1023.87
176 49552 11 1219.78
176 49595 9 357.07
176 49595 10 277.72
176 49630 9 1220.08
176 49682 9 2241.33
176 49682 10 2241.33
176 49853 9 312.50
176 49853 10 282.50
177 49552 10 1161.78
177 49552 11 1219.78
177 49595 9 297.56
177 49595 10 277.72
177 49630 9 1842.58
177 49682 9 2241.33
177 49682 10 2638.92
177 49853 9 312.50
177 49853 10 238.05
178 49448 9 2241.33
178 49462 9 1608.70
178 49462 10 1182.06
178 49462 11 226.77
178 49613 9 2017.20
178 49613 10 1679.69
178 49613 11 1999.78
178 49647 9 4512.50
178 49687 9 2092.67
178 49687 10 2653.00
178 49687 11 322.58
179 49448 9 2241.33
179 49462 9 1485.20
179 49462 10 1272.17
179 49462 11 226.77
179 49613 9 2017.20
179 49613 10 1679.69
179 49613 11 1999.78
179 49647 9 4512.50
179 49687 9 56.33
179 49687 10 2653.00
179 49687 11 322.58
179 50014 9 208.33
180 49573 9 253.12
180 49622 9 1510.05
180 49622 10 664.24
180 49622 11 2450.00
180 49681 9 1128.12
180 50027 9 3008.33
180 50027 10 1454.70
181 49573 9 1128.12
181 49622 9 1510.05
181 49622 10 290.96
181 49622 11 3362.00
181 49681 9 595.12
181 50015 9 312.50
181 50027 9 3008.33
181 50027 10 2091.87
182 49477 9 48.00
182 49477 10 34.29
182 49603 9 879.14
182 49603 10 633.74
182 49631 9 317.75
182 49631 10 1004.88
182 49631 11 2061.44
182 49651 9 3362.00
182 49691 9 1416.90
182 49691 11 2664.33
182 49698 9 3444.50
182 49967 9 3362.00
183 49477 9 396.75
183 49477 10 152.04
183 49603 9 911.82
183 49603 10 840.50
183 49631 9 711.82
183 49631 10 384.38
183 49631 11 2061.44
183 49691 9 1793.95
183 49691 10 3444.50
183 49967 9 2653.00
184 49572 9 168.75
184 49572 10 790.54
184 49624 9 1736.57
184 49689 9 3008.33
184 49689 10 1633.33
184 49967 9 2450.00
185 49572 10 595.04
185 49624 9 1770.70
185 49624 10 3362.00
185 49689 9 3008.33
185 49689 10 1633.33
186 49600 9 1750.80
186 49600 10 627.57
186 49655 9 2289.90
186 49655 10 739.17
186 49655 11 968.94
186 49974 11 208.33
187 49600 9 1750.80
187 49600 10 789.29
187 49655 9 2707.50
187 49655 10 739.17
187 49655 11 968.94
187 49974 11 208.33
188 49435 10 721.88
188 49435 11 1236.82
188 49465 9 1681.00
188 49578 9 3008.33
188 49593 9 1633.33
188 49593 10 653.54
188 49593 11 1654.24
188 49654 9 1795.08
188 49654 10 253.12
188 49685 9 2241.33
189 49435 10 753.54
189 49435 11 1134.75
189 49465 9 2241.33
189 49578 9 3008.33
189 49593 9 2320.92
189 49593 10 971.04
189 49593 11 2000.57
189 49654 9 2241.33
189 49685 9 2638.92
190 49482 10 769.33
190 49482 11 806.17
190 49523 9 2707.50
190 49523 10 636.53
190 49523 11 1128.12
190 49607 9 2092.67
190 49607 10 2075.37
190 49694 9 2258.57
190 49694 10 1257.11
190 49694 11 630.12
190 49700 9 1507.06
190 49700 10 824.93
191 49482 10 769.33
191 49482 11 806.17
191 49523 9 2707.50
191 49523 10 775.57
191 49523 11 1128.12
191 49607 9 2092.67
191 49607 10 2320.92
191 49694 9 1863.20
191 49694 10 1387.90
191 49700 9 1507.06
191 49700 10 824.93
192 49600 9 1413.38
192 49600 10 627.57
192 49607 10 3362.00
192 49655 9 2707.50
192 49655 10 641.74
192 49655 11 4512.50
192 49974 9 3362.00
193 49481 9 3008.33
193 49600 9 1685.80
193 49600 10 627.57
193 49655 9 2707.50
193 49655 10 739.17
193 49655 11 2450.00
193 49974 9 3362.00
194 49437 9 3008.33
194 49464 9 1172.39
194 49464 10 317.75
194 49464 11 1389.34
194 49550 10 401.04
194 49550 11 1537.56
194 49565 9 2578.57
194 49565 10 932.92
194 49602 9 1681.00
194 49602 10 1552.32
194 49602 11 4512.50
194 49616 10 1072.62
194 49616 11 1830.12
194 49690 10 1982.20
195 49437 9 3008.33
195 49464 9 1413.38
195 49464 10 596.32
195 49464 11 1989.36
195 49550 10 693.49
195 49550 11 1537.56
195 49565 9 1805.00
195 49565 10 627.57
195 49602 9 1681.00
195 49602 10 1750.80
195 49602 11 2664.33
195 49616 9 84.50
195 49616 10 1510.05
195 49616 11 1830.12
195 49690 10 1982.20
196 49552 10 509.58
196 49552 11 2092.67
196 49595 10 672.34
196 49630 9 168.75
196 49682 9 2653.00
196 49682 10 2653.00
196 49853 9 312.50
196 49853 10 238.05
197 49552 10 509.58
197 49552 11 2092.67
197 49595 9 885.06
197 49595 10 632.43
197 49630 9 168.75
197 49682 9 2241.33
197 49682 10 2653.00
197 49853 9 312.50
197 49853 10 238.05
198 49462 10 33.80
198 49613 9 2017.20
198 49613 10 1679.69
198 49613 11 2061.44
198 49647 9 4512.50
198 49687 11 1993.00
198 50014 9 208.33
199 49523 9 3362.00
199 49613 9 2017.20
199 49613 10 1812.46
199 49613 11 2061.44
199 49647 9 4512.50
This table above, shows that for the same tree observed by the same person there can be huge variation in observations from week to week. This is a main drawback from collecting data from Citizen Scientists.
d_filtered %>%
  group_by(common_name, month) %>%
  filter(month >= 9) %>%
  summarize(var_intensity = var(intensity,na.rm = TRUE),
            mean_intensity = mean(intensity, na.rm = TRUE)) %>%
  ggplot(aes(x = month, y = mean_intensity)) +
  geom_line() + facet_wrap(~ common_name) +
  ylab("Average Tree Coverage")
## Warning: Removed 1 rows containing missing values (geom_path).
The above set of graphs depicts the average tree coverage (intensity) from month to month for each species of tree. We would expect the tree coverage to decrease almost linearly, however we can see that's not the case. For some, the tree coverage was reported to increase in the colder months.

The above set of graphs depicts the average tree coverage (intensity) from month to month for each species of tree. We would expect the tree coverage to decrease almost linearly, however we can see that’s not the case. For some, the tree coverage was reported to increase in the colder months.

Results

##Making Icons
icons <- awesomeIcons(
  icon = 'ios-close',
  iconColor = 'white',
  library = 'ion',
  markerColor = trees$color)

##Interactive Leaflet Map
leaflet(trees) %>% 
  addTiles() %>%
  addAwesomeMarkers(~lon, ~lat,
                    icon=icons,
                    label = paste("Tag:", trees$tag, "|",
                    "Species:", trees$common_name))

This is an interactive leaflet map to show the different trees around campus. Shown for each marker is the common name and the tag number.

d_filtered %>%
  filter(month >= 9, !is.na(leaf_drop)) %>%
  ggplot(aes(x = month, fill = leaf_drop)) +
  geom_bar(position = "fill") +
  facet_wrap(~ common_name)
The graph pictured above shows the proportion of observations for each tree each month to see the percentage of observations that have been declared as leaves dropped. The decision was made that any tree with an intensity less than 50% has been declared as their leaves being dropped.

The graph pictured above shows the proportion of observations for each tree each month to see the percentage of observations that have been declared as leaves dropped. The decision was made that any tree with an intensity less than 50% has been declared as their leaves being dropped.

ggplot(d_filtered, aes(x = common_name, fill = common_name)) +
  geom_bar(position = "dodge") +
  ylab("Count of Observations") +
  xlab("Species") +
  coord_flip()
The bar chart above shows the raw count of observations made for each tree.

The bar chart above shows the raw count of observations made for each tree.

d_filtered %>% 
  filter(month >= 8) %>%
  ggplot(aes(x=date,
             y=intensity,
             group=phenophase_description,
             col=phenophase_description))+
  geom_point()+
  facet_wrap(~common_name)+
  ylim(0,100)+
  geom_smooth(span=3)
This graph was generated with help from Professor Wilson. This graph shows the trend in when leaves start to become colored and we have a smoothing line to indicate the speed at which they change colors.

This graph was generated with help from Professor Wilson. This graph shows the trend in when leaves start to become colored and we have a smoothing line to indicate the speed at which they change colors.

Conclusions

In the data, we are able to see that in Citizen Science, there can be a lot of variability in observations. It’s interesting to see how data is collected from other individuals and how it contributes to a bigger picture. We can see from the graphs that although most leaves typically drop around October, some trees don’t drop their leaves until much later in the year. Citizen Science is very useful in terms of getting young scientists involved and helping to contribute data to solving a bigger problem. One of the main drawbacks of using citizen science data is the large variation in observations as shown in the table above. Even looking at one particular tag, we can see the huge amount of variation in observations between the different participants. This has implications in our interpretation of these results. We have to keep in mind that because there is such wide variation in amount of observations made and the actual data from the observations that we can not imply causation.

Future Work

For work in the future, it would be neat to collect this data again next year and see how characteristics of the trees changed from year to year. It would also be neat to compare variation metrics between the different years of students. I think another next step would be to incorporate state level ecological data and see if trees in Western New York are different than those in other places of New York due to the differences in climate.

References

Professor Wilson | National Phenology Network | Stackoverflow (code) | Rstudio documentation