Materials:
Laboratory Methods:
library(dplR)
library(leaflet)
library(kableExtra)
library(magick)
library(ggplot2)
library(ggpubr)
library(TRADER)
library(jpeg)
QuercusMaster <- read.rwl("https://raw.githubusercontent.com/geo511-2019/2019-geo511-project-gbream/master/data/QuercusMaster.csv")
## Attempting to automatically detect format.
## Detected a csv file.
plot(QuercusMaster, plot.type = "spag")
Interseries_Cor <- interseries.cor(QuercusMaster, prewhiten=TRUE,
method="spearman")
#Changing column names
names(Interseries_Cor)[1]<-"Correlation"
names(Interseries_Cor)[2]<-"P-value"
kable(Interseries_Cor, digits = c(2, 4)) %>%
kable_styling(bootstrap_options = "striped", full_width = T, position = "left", font_size = 13, fixed_thead = T) %>%
row_spec(which(Interseries_Cor$Correlation >= .32), bold = T, color = "green", background = NULL) %>%
scroll_box(width = "700px", height = "300px")
Correlation | P-value | |
---|---|---|
X15.16QA | 0.52 | 0.0000 |
X16.16QA | 0.34 | 0.0003 |
X35.4QA | 0.48 | 0.0000 |
X37.4QA | 0.38 | 0.0000 |
X38.8aQA | 0.48 | 0.0000 |
X39.8QA | 0.58 | 0.0000 |
X40.16QA | 0.40 | 0.0000 |
X74.12QA | 0.47 | 0.0003 |
X88.12QA | 0.58 | 0.0000 |
X89.12QA | 0.55 | 0.0000 |
X95.8QA | 0.50 | 0.0000 |
X117.8QA | 0.27 | 0.0001 |
X133.12QA | 0.49 | 0.0000 |
X138.8QA | 0.39 | 0.0000 |
X179.4QA | 0.50 | 0.0000 |
X184.4QA | 0.50 | 0.0000 |
X202.16QA | 0.27 | 0.0020 |
X206.12QA | 0.30 | 0.0000 |
X210.8QA | 0.61 | 0.0000 |
X215.8QA | 0.39 | 0.0000 |
X219.16QA | 0.51 | 0.0000 |
X223.4QA | 0.32 | 0.0000 |
X228.16QA | 0.52 | 0.0000 |
X233.12QA | 0.27 | 0.0004 |
X247.16QA | 0.57 | 0.0000 |
X261.16QA | 0.54 | 0.0000 |
X269.12QA | 0.58 | 0.0000 |
X278.16QA | 0.53 | 0.0000 |
X18.16QR | 0.52 | 0.0000 |
X20.12QR | 0.50 | 0.0000 |
X21.8QR | 0.34 | 0.0002 |
X44.8QR | 0.44 | 0.0000 |
X54.12QR | 0.59 | 0.0000 |
X63.8QR | 0.41 | 0.0057 |
X94.16QR | 0.53 | 0.0001 |
X96.8QR | 0.56 | 0.0000 |
X109.15QR | 0.42 | 0.0245 |
X129.16QR | 0.31 | 0.0001 |
X132.12QR | 0.55 | 0.0000 |
X134.8QR | 0.34 | 0.0050 |
X135.4QR | 0.20 | 0.0058 |
X140.12QR | 0.36 | 0.0006 |
X144.4QR | 0.39 | 0.0001 |
X154.16QR | 0.44 | 0.0001 |
X165.QR | 0.47 | 0.0007 |
X172.12QR | 0.62 | 0.0002 |
X180.12QR | 0.58 | 0.0000 |
X181.8QR | 0.39 | 0.0000 |
X182.12QR | -0.28 | 0.9293 |
X183.8QR | 0.16 | 0.1274 |
X187.12QR | 0.54 | 0.0000 |
X194.12QR | 0.49 | 0.0000 |
X205.8QR | 0.29 | 0.0006 |
X207.4QR | 0.48 | 0.0000 |
X213.12QR | 0.59 | 0.0000 |
X217.12QR | 0.48 | 0.0000 |
X227.11QR | 0.27 | 0.0885 |
X229.4QR | 0.48 | 0.0000 |
X236.12QR | 0.34 | 0.0175 |
X237.8QR | 0.32 | 0.0000 |
X238.8QR | 0.49 | 0.0000 |
X239.4QR | 0.45 | 0.0001 |
X240.12QR | 0.33 | 0.0000 |
X241.4QR | 0.61 | 0.0002 |
X245.8QR | 0.62 | 0.0000 |
X273.8QR | 0.62 | 0.0000 |
X276.4QR | 0.25 | 0.0099 |
X277.12QR | 0.54 | 0.0000 |
X46.8QV | 0.34 | 0.0000 |
X53.16QV | 0.58 | 0.0000 |
X62.8QV | 0.42 | 0.0050 |
X65.8QV | 0.33 | 0.0033 |
X178.8QV | 0.43 | 0.0001 |
X230.16QV | 0.29 | 0.0001 |
X248.4QV | 0.48 | 0.0000 |
X274.8QV | 0.54 | 0.0000 |
X125.12QP | 0.44 | 0.0000 |
X22.12QM | 0.27 | 0.0006 |
X23.8QM | 0.16 | 0.0294 |
X79.8QM | 0.28 | 0.0017 |
X36.16QMu | 0.48 | 0.0000 |
X77. | 0.45 | 0.0000 |
X92. | 0.16 | 0.0419 |
X118. | 0.27 | 0.0013 |
X224. | 0.03 | 0.3299 |
X235. | 0.39 | 0.0000 |
QuercusMaster_exclude <- subset(QuercusMaster, select= -c(X182.12QR, X224., X92., X23.8QM, X183.8QR, X135.4QR, X117.8QA, X233.12QA, X276.4QR, X202.16QA, X118., X62.8QV, X230.16QV, X129.16QR, X205.8QR, X79.8QM, X206.12QA, X22.12QM, X118.))
Cross_SEGS <- corr.rwl.seg(QuercusMaster_exclude, seg.length = 50, pcrit = 0.10)
QuercusMaster.rwi <- detrend(rwl = QuercusMaster_exclude, method = "ModNegExp")
QuercusMaster.crn <- chron(QuercusMaster.rwi, prefix = "CRN")
plot(QuercusMaster.crn, add.spline=TRUE, nyrs=20)
PDSI <- read.csv("https://raw.githubusercontent.com/geo511-2019/2019-geo511-project-gbream/master/data/PDSI_Vals.csv")
Cook_PDSI <- read.csv("https://raw.githubusercontent.com/geo511-2019/2019-geo511-project-gbream/master/data/CookPDSI2.csv")
QChron <- read.csv("https://raw.githubusercontent.com/geo511-2019/2019-geo511-project-gbream/master/data/QChron3.csv")
Chron_vs_PDSI <-
ggplot() +
geom_line(data = QChron, aes(x = Year, y = Value, color = "RWI")) +
geom_line(data = PDSI, aes(x = Year, y = Value/8, color = "PDSI_Met")) +
geom_line(data = Cook_PDSI, aes(x = Year, y = Value/8, color = "PDSI_Cook")) +
geom_vline(xintercept=1965, linetype = "dotted")+
geom_vline(xintercept=1909, linetype = "dotted")+
geom_vline(xintercept=1936, linetype = "dotted")+
geom_vline(xintercept=1991, linetype = "dotted")+
geom_vline(xintercept=1895, linetype = "dotted")+
geom_vline(xintercept=1868, linetype = "dotted")+
geom_text(aes(x=1895, label="1895", y = 0.4), angle = 90) +
geom_text(aes(x=1868, label="1868", y = 0.23), angle = 90) +
geom_text(aes(x=1909, label="1909", y = 0.4), angle = 90) +
geom_text(aes(x=1965, label="1965", y = 0.5), angle = 90) +
geom_text(aes(x=1936, label="1936", y = 0.5), angle = 90) +
geom_text(aes(x=1991, label="1991", y = 0.5), angle = 90) +
scale_y_continuous(sec.axis = sec_axis(~.*8, name = "PDSI Values")) +
ggtitle("Mean RWI Chronology & PDSI Values (Cook & Met)")+
ylab("RWI Values")+
scale_colour_manual(name="Legend",
values=c(RWI="red", PDSI_Met="blue", PDSI_Cook="dark blue"))
Chron_vs_PDSI
PDSI_RWI <- read.csv("PDSI_RWI.csv")
PDSICHRON <-
ggscatter(PDSI_RWI, x = "PDSI", y = "RWI", add = "reg.line", cor.coef = TRUE, title = "RWI vs. PDSI 1895-2015")
PDSICHRON
Quercus_nopartials <- read.rwl("https://raw.githubusercontent.com/geo511-2019/2019-geo511-project-gbream/master/data/Quercus_Nopartials.csv")
## Attempting to automatically detect format.
## Detected a csv file.
#Radial Growth Averaging for Quercus (all)
growthAveragingALL(Quercus_nopartials, releases = NULL, m1 = 10, m2 = 10, buffer = 10, prefix = "ga", drawing = TRUE, criteria = 0.25, criteria2 = 0.5, gfun = mean, length = 5, storedev = jpeg)
## [1] "## Nowacki & Abrams analysis!"
## [1] "Criteria 0.25 Criteria2 0.5 m1 10 m2 10 Buffer 10 Length 5"
## [1] "Total number of releases >= 0.25 & < 0.5 is 43"
## inyears
## 1824 1841 1842 1859 1863 1875 1882 1894 1901 1924 1927 1928 1930 1934 1936
## 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1
## 1937 1938 1945 1948 1949 1957 1960 1967 1968 1973 1979 1985 1990 1991 1996
## 2 1 1 1 1 2 1 1 2 1 3 1 1 3 1
## 1997 1999 2001 2003
## 1 1 2 1
## [1] "Total number of releases >= 0.5 is 45"
## inyears
## 1830 1860 1868 1872 1875 1879 1896 1901 1903 1905 1912 1914 1916 1918 1922
## 1 1 1 1 1 1 1 1 2 1 1 1 1 1 2
## 1925 1930 1931 1934 1936 1942 1945 1955 1957 1958 1961 1964 1965 1967 1968
## 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1
## 1969 1970 1974 1979 1990 1991 1994 2004 2005
## 1 1 1 2 1 1 3 1 1
#Prefix "ga" just means that it's the growth average(ga). If this was for the absoluteIncreaseALL() function, I would put the prefix as "ai" for absolute increase.
# Define variable containing url
GA_165 <- "https://raw.githubusercontent.com/geo511-2019/2019-geo511-project-gbream/master/data/ga_165-QR.jpeg"
GA_133 <- "https://raw.githubusercontent.com/geo511-2019/2019-geo511-project-gbream/master/data/ga_X133.12QA.jpeg"
GA_187 <- "https://raw.githubusercontent.com/geo511-2019/2019-geo511-project-gbream/master/data/ga_X187.12QR.jpeg"
Growth_Depth <- read.csv("Growth_Depth.csv")
#Changing column names
names(Growth_Depth)[1]<-"Year"
names(Growth_Depth)[2]<-"Sample Depth"
names(Growth_Depth)[3]<-"Trees with Growth Releases"
kable(Growth_Depth) %>%
kable_styling(bootstrap_options = c("striped", "hover"), font_size = 15) %>%
row_spec(which(Growth_Depth$`Trees with Growth Releases` >= 3), bold = T, color = "red", background = NULL) %>%
scroll_box(width = "500px", height = "600px")
Year | Sample Depth | Trees with Growth Releases |
---|---|---|
1808 | 1 | 0 |
1809 | 1 | 0 |
1810 | 1 | 0 |
1811 | 1 | 0 |
1812 | 1 | 0 |
1813 | 1 | 0 |
1814 | 1 | 0 |
1815 | 1 | 0 |
1816 | 1 | 0 |
1817 | 1 | 0 |
1818 | 2 | 0 |
1819 | 2 | 0 |
1820 | 2 | 0 |
1821 | 2 | 0 |
1822 | 2 | 0 |
1823 | 2 | 0 |
1824 | 2 | 1 |
1825 | 3 | 0 |
1826 | 3 | 0 |
1827 | 3 | 0 |
1828 | 3 | 0 |
1829 | 3 | 0 |
1830 | 4 | 1 |
1831 | 4 | 0 |
1832 | 4 | 0 |
1833 | 5 | 0 |
1834 | 5 | 0 |
1835 | 5 | 0 |
1836 | 5 | 0 |
1837 | 6 | 0 |
1838 | 6 | 0 |
1839 | 6 | 0 |
1840 | 6 | 0 |
1841 | 6 | 0 |
1842 | 6 | 1 |
1843 | 6 | 0 |
1844 | 7 | 0 |
1845 | 8 | 0 |
1846 | 8 | 0 |
1847 | 8 | 1 |
1848 | 8 | 0 |
1849 | 8 | 0 |
1850 | 8 | 0 |
1851 | 8 | 0 |
1852 | 8 | 0 |
1853 | 8 | 0 |
1854 | 8 | 0 |
1855 | 9 | 0 |
1856 | 9 | 0 |
1857 | 9 | 0 |
1858 | 9 | 0 |
1859 | 9 | 1 |
1860 | 9 | 1 |
1861 | 9 | 0 |
1862 | 9 | 0 |
1863 | 9 | 1 |
1864 | 9 | 0 |
1865 | 9 | 0 |
1866 | 9 | 0 |
1867 | 9 | 0 |
1868 | 9 | 1 |
1869 | 10 | 0 |
1870 | 11 | 0 |
1871 | 11 | 0 |
1872 | 11 | 1 |
1873 | 11 | 1 |
1874 | 12 | 0 |
1875 | 12 | 2 |
1876 | 12 | 1 |
1877 | 13 | 0 |
1878 | 14 | 0 |
1879 | 15 | 1 |
1880 | 16 | 0 |
1881 | 16 | 0 |
1882 | 16 | 1 |
1883 | 16 | 1 |
1884 | 16 | 1 |
1885 | 16 | 1 |
1886 | 16 | 0 |
1887 | 16 | 0 |
1888 | 16 | 0 |
1889 | 16 | 1 |
1890 | 16 | 0 |
1891 | 16 | 0 |
1892 | 17 | 0 |
1893 | 17 | 1 |
1894 | 18 | 1 |
1895 | 19 | 0 |
1896 | 21 | 2 |
1897 | 21 | 2 |
1898 | 21 | 0 |
1899 | 21 | 1 |
1900 | 21 | 0 |
1901 | 22 | 2 |
1902 | 22 | 1 |
1903 | 22 | 2 |
1904 | 22 | 0 |
1905 | 23 | 2 |
1906 | 23 | 0 |
1907 | 27 | 0 |
1908 | 29 | 1 |
1909 | 30 | 0 |
1910 | 30 | 0 |
1911 | 31 | 0 |
1912 | 31 | 1 |
1913 | 31 | 0 |
1914 | 33 | 1 |
1915 | 33 | 0 |
1916 | 34 | 2 |
1917 | 35 | 1 |
1918 | 36 | 1 |
1919 | 37 | 0 |
1920 | 37 | 0 |
1921 | 37 | 0 |
1922 | 37 | 2 |
1923 | 37 | 0 |
1924 | 37 | 1 |
1925 | 38 | 1 |
1926 | 39 | 1 |
1927 | 39 | 2 |
1928 | 40 | 1 |
1929 | 42 | 0 |
1930 | 42 | 3 |
1931 | 42 | 2 |
1932 | 43 | 0 |
1933 | 44 | 0 |
1934 | 45 | 2 |
1935 | 46 | 2 |
1936 | 46 | 2 |
1937 | 46 | 3 |
1938 | 47 | 2 |
1939 | 47 | 0 |
1940 | 47 | 0 |
1941 | 47 | 0 |
1942 | 48 | 1 |
1943 | 48 | 1 |
1944 | 48 | 0 |
1945 | 49 | 2 |
1946 | 50 | 0 |
1947 | 50 | 0 |
1948 | 50 | 1 |
1949 | 52 | 2 |
1950 | 52 | 0 |
1951 | 53 | 0 |
1952 | 53 | 1 |
1953 | 54 | 0 |
1954 | 54 | 0 |
1955 | 54 | 3 |
1956 | 54 | 1 |
1957 | 54 | 4 |
1958 | 55 | 2 |
1959 | 55 | 0 |
1960 | 55 | 2 |
1961 | 55 | 2 |
1962 | 55 | 0 |
1963 | 55 | 0 |
1964 | 56 | 3 |
1965 | 58 | 1 |
1966 | 59 | 2 |
1967 | 59 | 2 |
1968 | 59 | 3 |
1969 | 59 | 1 |
1970 | 59 | 2 |
1971 | 60 | 4 |
1972 | 61 | 0 |
1973 | 62 | 2 |
1974 | 62 | 3 |
1975 | 62 | 3 |
1976 | 62 | 1 |
1977 | 62 | 0 |
1978 | 64 | 0 |
1979 | 64 | 4 |
1980 | 64 | 1 |
1981 | 64 | 1 |
1982 | 64 | 1 |
1983 | 64 | 0 |
1984 | 64 | 0 |
1985 | 64 | 1 |
1986 | 65 | 0 |
1987 | 65 | 1 |
1988 | 66 | 0 |
1989 | 66 | 0 |
1990 | 67 | 2 |
1991 | 67 | 7 |
1992 | 68 | 0 |
1993 | 68 | 1 |
1994 | 68 | 4 |
1995 | 68 | 2 |
1996 | 68 | 4 |
1997 | 68 | 1 |
1998 | 68 | 0 |
1999 | 68 | 2 |
2000 | 68 | 1 |
2001 | 68 | 2 |
2002 | 68 | 0 |
2003 | 68 | 2 |
2004 | 68 | 3 |
2005 | 68 | 4 |
2006 | 68 | 1 |
2007 | 68 | 3 |
2008 | 68 | 0 |
2009 | 68 | 0 |
2010 | 68 | 0 |
2011 | 68 | 0 |
2012 | 68 | 0 |
2013 | 68 | 0 |
2014 | 68 | 0 |
2015 | 68 | 0 |
2016 | 68 | 0 |
2017 | 68 | 0 |
Bunn AG. (2008). A dendrochronology program library in R (dplR). Dendrochronologia, 26, 115–124.
Carrer, M. (2011). Individualistic and time-Varying tree-ring growth to climate sensitivity. PloS one, 6(7), e22813. doi: 10.1371/journal.pone.0022813
National Climatic Data Center (NCDC). (2016). climdiv-pdsidv-v1.0.0-20160204 [Data File]. Retrieved from ftp://ftp.ncdc.noaa.gov/pub/data/cirs/climdiv/
Nowacki GJ & Abrams, MD. (2008). Radial-growth averaging criteria for reconstructing disturbance histories from presettlement-origin oaks. Ecological Monographs, 67.
Sheppard, PR. (2010). Dendroclimatology: extracting climate from trees. WIREs Climate Change, 1(3), 343-352. https://doi.org/10.1002/wcc.42
Sullivan PF, Pattison, RR, Brownlee, AH, Cahoon SMP, & Hollingsworth, TN. (2016). Effect of tree-ring detrending method on apparent growth trends of black and white spruce in interior Alaska. Environmental Research Letters, 11 (11).